
GoalsGoals

Deepen object-oriented programming principles to
write state-of-the-art code
Realize and put into practice these principles with
simple and striking examples
Put under control the technical debt by refactoring
Learn techniques specific to legacy applications
Acquire a synthetic vision of the most used clean design
methods

PublicPublic

Developers - Architects

PrerequisitesPrerequisites

Experience in Java

Structure

50% Theory, 50% Practice

Clean CodeClean Code

Duration 3 day(s) (CLEAN-CODE-03)Duration 3 day(s) (CLEAN-CODE-03)

Design and write a clean code, improve an existing codeDesign and write a clean code, improve an existing code

DescriptionDescription

The introduction of agile methods has made it easier to build software that meets real needs, and to improve the delivery process. The
clean code is a complementary set of technical practices, to ensure the durability of the software built. A clean code is indeed the sine
qua non of a robust software (low maintenance cost) and scalable (can be adapted to new needs).

Zenika - 53 Rue de Châteaudun - 75009 Paris - Tél +33 (0)1 45 26 19 15 - Fax +33 (0)1 72 70 45 10
training@zenika.com - www.zenika.com - Siren 489 682 005 RCS Paris - TVA FR 39 489 682 005

N° organisme formation 11 75 407 53 75 - Code NAF 6202A

ProgramProgram

The software quality imperativeThe software quality imperative

Consequences of insufficient quality
The infernal cycle: writing, rewriting
The concept of technical debt
Tools and processes: necessary, but not sufficient

Quality control tools
Process and formatting
Limitations

What is clean code?

Principles of clean designPrinciples of clean design

General principles
Founding principles of OOP
The four principles of Kent Beck
Importance of naming
Common sense by acronyms: YAGNI / KISS / DRY / POLA
Some functional programming principles

Minimize coupling, maximize cohesion
SOLID principles
Cohesion and coupling
Stability and instability

Supple design
Intention-Revealing Interfaces
Side-Effect-Free Functions
Defensive Programming
Conceptual Contours
Standalone Classes and Closure of Operations
Declarative Style of Design
Bonus: the principle of symmetry

Improve the quality of existing code: smells and refactorsImprove the quality of existing code: smells and refactors

The concepts of smell and refactor
The smells of Martin Fowler

Duplicated method
Duplicated class
Long method
Long class
Primitive obsession
Brief overview of other smells

Java effect
Equality .. or not
Immutability with holes
Instant obsolescence
Hide this exception that I can not see
ArrayList obsession

Weak design
Technical Modules: Service-Dao-Entity
Generate getters and setters
Death by nesting: the devil's staircase
Packages unpacked
To be or not to be: the inappropriate relationship Is-not-a
Javadoc and alibi tests
The editorialist: the intelligence buried in the comments

Zenika - 53 Rue de Châteaudun - 75009 Paris - Tél +33 (0)1 45 26 19 15 - Fax +33 (0)1 72 70 45 10
training@zenika.com - www.zenika.com - Siren 489 682 005 RCS Paris - TVA FR 39 489 682 005

N° organisme formation 11 75 407 53 75 - Code NAF 6202A

The night of living codes
Properly modify a legacy application

Panorama of other clean design methodsPanorama of other clean design methods

Test-first design at the service of quality
Software Craftsmanship
Standard design bricks
The business domain as the core of the software: the Domain-driven Design approach

Zenika - 53 Rue de Châteaudun - 75009 Paris - Tél +33 (0)1 45 26 19 15 - Fax +33 (0)1 72 70 45 10
training@zenika.com - www.zenika.com - Siren 489 682 005 RCS Paris - TVA FR 39 489 682 005

N° organisme formation 11 75 407 53 75 - Code NAF 6202A

	Clean Code
	Duration 3 day(s) (CLEAN-CODE-03)
	Design and write a clean code, improve an existing code
	Description
	Public

	Goals
	Prerequisites

	Program

	The software quality imperative
	Principles of clean design
	Improve the quality of existing code: smells and refactors
	Panorama of other clean design methods

